metal-organic papers

Received 14 February 2005 Accepted 23 February 2005

Online 7 May 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Marvadeen A. Singh-Wilmot,^a* Ishenkumba A. Kahwa^a and Alan J. Lough^b

^aChemistry Department, University of the West Indies, Mona Campus, Kingston 7, Jamaica, and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: marvadeen.singhwilmot@uwimona.edu.jm

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.008 Å Disorder in main residue R factor = 0.040 wR factor = 0.094 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(µ-2,6-diformyl-4-methylphenolato)bis[bis(2,6-diformyl-4-methylphenolato)neodymium(III)]

The title compound, $[Nd_2(C_9H_7O_3)_6]$, crystallizes from an anhydrous alcoholic mixture of neodymium perchlorate, 2,6diformyl-4-methylphenol and sodium hydroxide. The structure consists of discrete dinuclear molecules with Nd^{III} ions in eightfold coordination environments. The complete molecule is generated from the asymmetric unit by a crystallographic center of symmetry. Intramolecular and intermolecular π - π stacking and C-H···O interactions help to stabilize the crystal packing.

Comment

Lanthanide(III) dinuclear compounds which feature well isolated $Ln^{3+}-Ln^{3+}$ pairs are suitable building blocks for the assembly of Ln^{III} nanoclusters (Zheng, 2001) and ideal models for the study of metal–metal interactions in these polynuclear complexes (Thompson *et al.*, 2001). The title compound, (I), was synthesized during attempts to build dinuclear complexes (Kahwa *et al.*, 1989) that could facilitate a comparative study of the synthesis and electronic properties of Ln^{III} nanoclusters.

In (I), each Nd^{III} ion is coordinated by ligating carbonyl and phenolate O atoms from two bridging and two bidentate 2,6diformyl-4-methylphenol ligands to give each metal ion an eightfold coordination environment of approximate D_{4d} symmetry (Fig. 1). The complete molecule is generated by a crystallographic inversion center which is located at the center of the four-membered Nd₂O₂ ring (Fig. 1). The bond distances and angles (Table 1) are similar to those obtained for other

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are not shown. Unlabeled atoms are related to labeled atoms by the symmetry operator (-x, 1 - y, -z). Both disorder components are shown.

Figure 2

Part of the crystal structure of (I), showing the π - π stacking interactions as dashed lines. Cg1, Cg2 and Cg3 are defined as the centroids of rings C1–C6, C10–C15 and C19–C24, respectively. Atoms labelled with 'A' and '#' are related by the symmetry codes (-x, 1 - y, -z) and $(\frac{1}{2} - x, \frac{1}{2} - y, -z)$, respectively.

lanthanide(III) complexes containing a bridging Ln_2O_2 ring (Howell *et al.*, 1996). The Nd1···Nd1ⁱ separation (see Table 1 for symmetry code) in (I) is 4.0424 (5) Å.

Figure 3

A view of (I), showing weak $C-H\cdots O$ interactions as dashed lines. Colour codes: green Nd, red O and black C. H atoms not involved in hydrogen bonding have been omitted.

In the crystal structure of (I), there are significant intra- and intermolecular $\pi - \pi$ interactions. The intramolecular $Cg1 \cdots Cg2$ distance is 3.698 Å, with a perpendicular distance of 3.314 Å, where Cg1 and Cg2 are the centroids of rings C1– C6 and C10–C15, respectively. In addition, intermolecular $\pi - \pi$ interactions $[Cg3 \cdots Cg3^v = 3.653 (4) Å$ and perpendicular distance = 3.440 Å, where Cg3 is the centroid of ring C19–C24; symmetry code: (v) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z] link molecules into extended chains along [110] (see Fig. 2). A three-dimensional network is formed when these chains are connected by weak $C-H\cdots O$ intermolecular interactions (Table 2 and Fig. 3).

This study indicates that compounds of this type are ideal for studying the electronic interactions in well isolated Ln^{III} – Ln^{III} pairs.

Experimental

Nd(ClO₄)₃·nH₂O (0.12 mmol in 20 ml anhydrous ethanol) was added to a mixture of 2,6-diformyl-4-methylphenol (0.35 mmol) and NaOH (0.35 mmol) in anhydrous methanol (25 ml). The clear yellow solution was left to evaporate slowly on a hotplate at 333 K. After 1 d, yellow needles of (I) were recovered in 42% yield. Crystal data

$[Nd_2(C_9H_7O_3)_6]$
$M_r = 1267.36$
Monoclinic, $C2/c$
a = 21.1211 (6) Å
b = 15.0486 (4) Å
c = 15.5611 (5) Å
$\beta = 97.181 \ (1)^{\circ}$
V = 4907.2 (2) Å ³
Z = 4

Data collection

Nonius KappaCCD diffractometer
φ scans, and ω scans with κ offsets
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski &
Minor, 1997)
$T_{\min} = 0.846, T_{\max} = 0.918$
14613 measured reflections

Refinement

<i>.</i>	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + 5.4862P]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.094$	$(\Delta/\sigma)_{\rm max} = 0.002$
S = 1.07	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
4319 reflections	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
348 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.00056 (10)

 $D_x = 1.715 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 4265

4319 independent reflections

3340 reflections with $I > 2\sigma(I)$

reflections $\theta = 2.6-25.0^{\circ}$ $\mu = 2.17 \text{ mm}^{-1}$ T = 150 (1) KCut needle, yellow $0.08 \times 0.05 \times 0.04 \text{ mm}$

 $\begin{aligned} R_{\rm int} &= 0.061 \\ \theta_{\rm max} &= 25.0^\circ \end{aligned}$

 $h = -25 \rightarrow 25$ $k = -17 \rightarrow 17$

 $l = -18 \rightarrow 18$

Table 1

Selected geometric parameters (Å, °).

Nd1-O5	2.293 (4)	Nd1-O7	2.466 (3)
Nd1-O8	2.293 (3)	Nd1-O4	2.489 (4)
Nd1-O2 ⁱ	2.428 (3)	Nd1-O1	2.511 (4)
Nd1-O2	2.463 (3)	Nd1-O3 ⁱ	2.593 (4)
O5-Nd1-O8	110.43 (13)	O7-Nd1-O4	131.38 (13)
$O5-Nd1-O2^{i}$	137.49 (11)	O5-Nd1-O1	81.59 (14)
$O8-Nd1-O2^{i}$	86.93 (12)	O8-Nd1-O1	138.96 (12)
O5-Nd1-O2	80.53 (12)	$O2^i - Nd1 - O1$	110.92 (14)
O8-Nd1-O2	150.67 (11)	O2-Nd1-O1	67.95 (12)
$O2^i - Nd1 - O2$	68.52 (13)	O7-Nd1-O1	71.14 (14)
O5-Nd1-O7	82.02 (13)	O4-Nd1-O1	139.26 (12)
O8-Nd1-O7	72.01 (13)	$O5-Nd1-O3^{i}$	153.59 (11)
O2 ⁱ -Nd1-O7	140.35 (12)	O8-Nd1-O3 ⁱ	74.94 (12)
O2-Nd1-O7	137.31 (12)	$O2^i - Nd1 - O3^i$	67.03 (11)
O5-Nd1-O4	71.25 (12)	O2-Nd1-O3 ⁱ	107.71 (11)
O8-Nd1-O4	80.22 (12)	O7-Nd1-O3 ⁱ	75.08 (12)
O2 ⁱ -Nd1-O4	74.23 (12)	O4-Nd1-O3 ⁱ	134.51 (12)
O2-Nd1-O4	77.88 (11)	$O1-Nd1-O3^{i}$	78.71 (13)

Symmetry code: (i) -x, 1 - y, -z.

Table 2			
Hydrogen-bonding	geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3A\cdots O9^{ii}$	0.95	2.59	3.497 (7)	160
$C16-H16A\cdots O1^{iii}$	0.95	2.50	3.176 (6)	128
$C25-H25A\cdots O6^{iv}$	0.95	2.43	3.349 (8)	162
Symmetry codes: (ii) x, 1	$-y, \frac{1}{2}+z$; (iii) $x, 1 - y, z - \frac{1}{2}$; (iv) $\frac{1}{2} - x, y - \frac{1}{2}$,	$\frac{1}{2} - z$.

All H atoms were placed in calculated positions, with C–H distances of 0.95 (phenyl) and 0.98 Å (methyl), and were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier})$ or $1.5U_{\rm eq}({\rm methyl carrier})$.

Data collection: *COLLECT* (Nonius, 2003); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge NSERC Canada and the University of Toronto for funding and Graduate Studies and Research, The University of the West Indies, Mona Campus, for supporting MASW and IAK.

References

- Howell, R. C., Spence, K. V. N., Kahwa, I. A., White, A. J. P. & Williams, D. J. (1996). J. Chem. Soc. Dalton Trans. pp. 961–968.
- Kahwa, I. A., Folkes, S. A., Williams, D. J., Ley, S. V., Mahonyey, C. A. & McPherson, G. L. (1989). J. Chem. Soc. Chem. Commun. pp. 1531–1533.
- Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2001). *SHELXTL/PC*. Version 6.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thompson, M. K., Vuchkov, M. & Kahwa, I. A. (2001). Inorg. Chem. 40, 4332– 4341.
- Zheng, Z. (2001). Chem. Commun. pp. 2521-2529.